
International Journal of Engineering Applied Sciences and Technology, 2023
Vol. 8, Issue 02, ISSN No. 2455-2143, Pages 216-219

Published Online June 2023 in IJEAST (http://www.ijeast.com)

216

Learning Graph Databases: Neo4j an overview

Dr. Dipali Meher and Dr. Pallawi Bulakh and Prof. Meenal Jabde
Modern College of Arts, Science and Commerce,

Ganeshkhind, Pune 411016, India

Abstract: As the internet is growing day by day, the amount
of data being generated is huge. This data includes struc-
tured data and unstructured data. The data along with its
relationship with other data makes the most powerful and
meaningful information. Maximum data exists in the form
of the relationship between different or same objects and
the noticeable thing is the relationship between the data is
more important than the data itself. These relationships are
handled efficiently by Relational databases that store data
having structures and which have several records. The
important point to be noted here is that these Relational
database management Systems use tables with normaliza-
tion concept. If the amount of data in such tables is huge,
then handling such a large amount of data with its relation-
ships is a tedious task. Here, Graph Databases come into
picture. Entities and their relationships in relational data-
bases will be reflected with nodes and relationships in
graph databases. Graph databases provide very simple
data model than databases with Online Transaction Pro-
cessing systems. Graph databases provide features such as
transactional integrity and operational availability. This
paper introduces the idea of graph database systems in
conjunction with Neo4j encompassing its query features,
consistency, transactions, availability, and scaling.

Keywords: Graph databases, Relational databases, Neo4j,
NoSQL, Features of Neo4j, Cypher query Language

I. INTRODUCTION

1.1 Introduction to Graph Databases
Graphical databases replace relational databases in upcoming
days. Graphical databases fall under the category of NOSQL.

NOSQL stands for Not Only (Non) Structured Query Lan-
guage[1]. Before 1990 relational databases were dominant soon
after web development started, and the world of unstructured
data started increasing. It has been found that relational data-
bases do not fulfill the future requirement of web estate data-
bases[2]. As this is the Web era of everything and hereafter
drastic changes in databases will come due to customization of
open-source databases for its use. Agility is the useful property
of graph databases [3]. NoSQL databases are non-tabular da-
tabases and stores data indifferent format that relational data-
bases. They come in variety of types which is based on their
data model [4]. The main types of NOSQL databases are doc-
ument, key-value, wide-column, and graph databases. Due to
provision in database design and schema flexibility they store
large amount of data using clustering concepts. As relational
databases fail to provide clustering concept, hence does not
suitable for distributed database concepts. After 1995, tremen-
dous use of polymorphic data in web development has been
started and business managers were started thinking to make
this data for monitory gain[5]. Unfortunately, relational data-
bases do not provide facility for storage of polymorphic data in
clustered design. Carlo Strozzicomes with idea of NOSQL
databases in 1995. Soon after Google and Amazon has devel-
oped their research papers on NOSQL databases and their use
[6][7]. This is the turning point for relational databases and
became a stepping stone for NoSQL databases.
Instead of tables and documents, graph database stores nodes
and relationships. Data storing based on sketching of diagram.
Data in graph database is stored without predefined model i.e.,
it allows flexibility of its storage, use and it can be rebuilt al-
so[8][9].

Table 1 Difference between relational databases and graph databases

Key Point Graph database Relational database
Format Nodes and edges Tables with rows and columns
Relationships Considered data, repre-

sented by edges between
nodes

Related across tables, estab-
lished using foreign key be-
tween tables

Complex que-
ries

Run quickly and do not
require JOINS

Always require complex joins
between tables

Top use cases Relationship focused use
cases
Fraud detection and rec-
ommendation engines

Transaction focused use cases
Online transaction and account-
ing

International Journal of Engineering Applied Sciences and Technology, 2023
Vol. 8, Issue 02, ISSN No. 2455-2143, Pages 216-219

Published Online June 2023 in IJEAST (http://www.ijeast.com)

217

Example

1.2 Overview of Neo4j Graph Database
The world is now a connected enterprise. Everything is rich set
of connections on what is happening. Many times, it has been
found that connections between items are more important that
the item itself. For example, WWW is a directed network con-
tains nodes and edges. These nodes represent Web pages. Edg-
es represents the hyperlinks between web pages. There exists
an edge from one page to another page if one page contains at
least one hyperlink pointing to another page. For example,
social networks like Facebook – It links people according to
various social relationships, like friendship, collaboration and
colleague relation. Relational databases use tables to store these
relationships may be in same table or in different table. For
navigation of relationships JOIN operations and cross-lookup
concept is necessary. All to do this requires very rigid database
schema. Which means relations databases handles relationships
poorly. In case of graph databases there will be no concept of
JOIN or lookups. In graph databases relationships are stored
natively alongside of data elements (data elements are known
as nodes) in elastic format. In graph databases [10], everything
about the graph is optimized for traversing through the data
(nodes and relationships) very quickly, as millions of connec-
tions per second, per crore speed. In Graph databases there are
many questions on which queries can be written are relation-
ships rather than elements. Neo4j is very popular graph data-
base that uses Cypher Query Language (CQL). Currently
Neo4j is the world's principal, most widely used open-source
graph database [11]. This database extremely scalable and
schema less. Following table gives the difference between
Graph databases and relational databases [12]. Neo4j is an
open-source database with online backup and high availability.
Neo4j is developed using JAVA language byNeo4j, Inc.

1.3 Nodes and relationship creation using Cypher Query
Language(CQL)
Graph databases consists of nodes and edges. Nodes represent
detailed entities and edges (relationships) are nothing but con-
nections between two entities (i.e., two nodes) [13]. Every edge
in graph databases must have directional significance which
clearly identifies source and destination. Nodes are related with
each other with some relationships they allow users to find
fascinating patterns or paths among same or different types of
nodes. In graph databases data is organized at one time then
interpreted in various ways based on relationships created. A
node can have unlimited number of relationships [14]. Rela-
tionships are known as first class citizens in graph databases.
Relationships i.e. edges defines the value of graph. Relation-
ships may also have properties for them. Using these properties
users can add importance to the edges i.e. to the relationships.

For example, since when did two peoples (means nodes in
graph) know each other (may be friendship relation), the dis-
tance between the nodes, or information sharing aspects be-
tween the nodes. The graph is queried by using these relation-
ships. Neo4j Online console is used to fire the queries. The link
for using console is https://console.neo4j.org/. User has to first
clear the database to start creation of own database structure.
Example, Node creation Syntax:
Create (alis: node type{attributed name1: attribute val-
ue1,attribute name 2: attribute value 2……}) return alias
Example: Create (: Person{name: "Dipali",age:39})
Create (: Person{name:"Pallawi",age:41}) Create (:area{name:
"Pune"})
Relationship Creation Syntax: match(alias1:node type1),(alias:
node type 2),…. Where alias1.attribute namex=alais2.attribute
namex
Create (alias1)-[: relationship name{attributes of relationship
name: values of attribute}]->(alias2) return alias,alias2…..
Example1 There are two nodes of person types. One person is a
friend of another person. Here, friend of is the relationship.
match(p:Person),(pp:Person) where p.name="Dipali" and
pp.name="Pallawi" create(p)-[:Friend_of]->(pp)return p,pp
Example 2 Another relationship: person lives in the city. Here,
lives in a relationship.
match(p1:Person),(a1:area) where p1.name="Dipali" and
a1.name="Pune" create(p1)-[:lives_in]->(a1)return p1,a1

1.4 Querying with Cypher Query Language to Neo4j
database
Syntax for firing queries
Match (aliasx: nodetypex), (alaisy:node type y) Where (ali-
asx)-[:relationship name {relationship attributes checking if
any}]->(aliasy)…. return aliasx, aliasy
Query1: List the names of people who are friend of each other
MATCH (p: Person), (pp:Person) Where(p)-[:Friend_of]->(pp)
RETURN p.name,pp.name
Query 2: Display the names of people living in Pune.
Match (p1:Person),(a1:area) where a1.name="Pune" and (p1)-
[:live_in]->(a1) return p1.name,a1.name
the output of both queries is as follows:

Fig. 1. Firing queries in Neo4j

https://console.neo4j.org/

International Journal of Engineering Applied Sciences and Technology, 2023
Vol. 8, Issue 02, ISSN No. 2455-2143, Pages 216-219

Published Online June 2023 in IJEAST (http://www.ijeast.com)

218

1.5 Features of Neo4j
a) Consistency: Graph databases are operating on nodes
which are connected with each other. Usually graph databases
do not support node distributions of same graph on dissimilar
servers at different locations. Infinite graph supports node dis-
tribution across a cluster of servers. Consistency will be clearly
reflected on single server. Neo4jalways supports ACID prop-
erties. When Neo4J is run on a cluster, a write operation to the
master is eventually synchronized to the its slaves. The slaves
are always available for read operation. Immediate synchroni-
zation of write operations with master will be done. Other
slaves have to wait for synchronization as they have to wait for
the data to propagate from the master. Transaction concept will
be used to ensure consistency in graph databases. They do not
allow dangling relationships: The start node and end node al-
ways have to exist, and nodes can only be deleted if they don’t
have any relationships attached to them [15].

b) Transactions: As Neo4j is ACID-compliant. Transaction
will be started before changing any nodes or adding any rela-
tionships to existing nodes. If operations are not wrapped in
transactions then user will get a Not in Transaction Exception.
Transaction initiation is not required for read operations. i.e.
Neo4j supports Atomicity, Consistency, Isolation and Durabil-
ity properties like relational databases.
example (db: database)
Transaction t1 = db.beginTx();
try { Node n1 = db.createNode(); node.setProperty("name",
"Research Paper"); n1.setProperty("published", "2022");
t1.success();
} finally
{t1.finish();}
Explanation: A transaction on the database is started, A node is
created and set properties on it, Marked the transaction as a
success and finally completed it. If the transaction is not
marked as success, then Neo4j assumes that transaction was a
failure and rolls it back when finish is issued. When success is
set without finish does not mean that transaction is committed.
This is the different that how RDBMS manages the transaction
and has to be keep in mind when development of an applica-
tion.

c) Availability: High availability is achieved in Neo4j version
1.8 as it provides replication through slaves. These slaves can
handle write operation. Write operation is first committed at
the master slave secondly at the remaining slaves with syn-
chronization manner. Apache Zoo Keeper will be used in
Neo4j to keep track of the last transaction IDs persisted on each
slave node and the current master node. To find out which
server is master it communicates with Zoo Keeper. Server will
become master if it is the first one to join the cluster. When a
master slave goes down, the cluster elects a master from the
available nodes, thus data is highly available.

d) Flexible schema: Neo4j graph database does not allow users
to follow fixed schema. Users can add and remove properties
or relationships at any time as per requirement.

e) Query Features: Neo4j using Cypher Query Language
which uses ASCII for depicting graphs. keywords like Match,
return, order, Aggregate, Limit and skip can be used.

f) Scalability and relatability: At any given point of time any
number of nodes can be added or removed depending on
read/write operations in query processing. Data Safely and
reliability is supported by replication feature of this database.
Sharding concept is used in NoSQL databases, where data is
split and distribution is done across different servers, but in
sharding becomes difficult in graph databases.

g) This database provides a built-in web browser web appli-
cation. This database supports ample drivers that can work for
REST API, Node JS and supports cipher API and Java API

h) Neo4j supports indexing by Apache Lucene.

II. CONCLUSION
Graph databases supports ACID properties hence they are odd
man out in fish in NOSQL pond. Due to Agility property of
graph databases, they will be used everywhere instead of rela-
tional databases. This paper gives an idea about how user can
start self-learning for graph databases. By understating simple
syntax of node and relationship creation any database adminis-
trator can start learning Neo4j graphical database and ultimate-
ly started using it for database creation. This paper also ex-
plains various features of Neo4j graph database and their sim-
plicity.

III. REFERENCES

[1]. Biswajeet Sethi, Samaresh Mishra, P. ku. P. A Study
of NoSQL Database. International Journal of Engi-
neering Research & Technology, 67(6), 14–21,(2014).

[2]. Harpreet, K., Jaspreet, K., & Kamaljit, K. A Review
of Non-relational Databases, Their Types, Advantages
and Disadvantages. International Journal of Engineer-
ing Research & Technology (IJERT), 2(2), 1–5.
https://www.ijert.org/a-review-of-non-relational-
databases-their-types-advantages-and-
disadvantages,(2013)

[3]. Paul, Subrata & Mitra, Anirban &Koner, Chandan. A
Review on Graph Database and its representation.
2019 International Conference on Recent Advances in
Energy-efficient Computing and Communication
(ICRAECC) 1-5.
10.1109/ICRAECC43874.2019.8995006,(2019)

[4]. Bathla, G., Rani, R., & Aggarwal, H. Comparative
study of NoSQL databases for big data storage. Inter-
national Journal of Engineering and Technolo-

https://www.ijert.org/a-review-of-non-relational-databases-their-types-advantages-and-disadvantages
https://www.ijert.org/a-review-of-non-relational-databases-their-types-advantages-and-disadvantages
https://www.ijert.org/a-review-of-non-relational-databases-their-types-advantages-and-disadvantages

International Journal of Engineering Applied Sciences and Technology, 2023
Vol. 8, Issue 02, ISSN No. 2455-2143, Pages 216-219

Published Online June 2023 in IJEAST (http://www.ijeast.com)

219

gy(UAE), 7(2), 83–87.
https://doi.org/10.14419/ijet.v7i2.6.10072, (2018)

[5]. Jacksi, Karwan&Abass, Shakir. Development History
of The World Wide Web. International Journal of Sci-
entific & Technology Research. 8. 75-79,(2019)

[6]. Chang, fay, Jeffrey Dean, Sanjay Ghemawat, Wilson
C. Hsieh, Deborah A. et.al., “BigTable: A Distributed
Storage System for Structured Data.” OSDI 2006 - 7th
USENIX Symposium on Operating Systems Design
and Implementation, 205–18,(2006)

[7]. DeCandia, Giuseppe &Hastorun, Deniz &Jampani,
Madan &Kakulapati, et.al., Dynamo: Amazon's highly
available key-value store. Operating Systems Review
- SIGOPS. 41. 205-220. 10.1145/ 1294261.
1294281,(2007)

[8]. Patil, S., Vaswani, G., & Bhatia, A., Graph Databases-
An Overview. International Journal of Computer Sci-
ence and Information Technologies, 5(1), 657–660.
www.ijsit.com, (2014)

[9]. Larriba-Pey, Josep-Lluis& Martínez-Bazan, Norbert
& Domínguez-Sal, David. (2014). Introduction to
Graph Databases. 10.1007/978-3-319-10587-
1_4,(2014)

[10]. Agarwal Smita, Patel Atul, A study on graph storage
database of NOSQL, International journal on Soft
Computing, Vol.5, No.1,
DOI :10.5121/ijscai.2016,(2016)

[11]. López, Félix & Cruz, Eulogio., Literature review
about Neo4j graph database as a feasible alternative
for replacing RDBMS. Industrial Data. 18. 135.
10.15381/idata.v18i2.12106,(2015)

[12]. Sadalage, PJ, and Martin Fowler, NoSQL, Distilled: A
Brief Guide to the Emerging World of Polyglot Per-
sistence. Vasa., Pearson Education,(2012)

[13]. Francis, N., Green, A., Guagliardo, P., Libkin, L.,
Lindaaker, T., Marsault, V., Plantikow, S., Rydberg,
M., Selmer, P., & Taylor, A., Cypher: An evolving
query language for property graphs. Proceedings of
the ACM SIGMOD International Conference on
Management of Data, 1433–1445. https://
doi.org/10.1145/ 3183713.3190657 (2018)

[14]. K. Saeed and W. Homenda (Eds.): CISIM 2015,
Graph Databases: Their Power and Limitations, LNCS
9339, pp. 58–69, 2015. DOI: 10.1007/978-3-319-
24369-6_5

[15]. NoSQL Databases | Research Paper | AZPapers

https://doi.org/10.14419/ijet.v7i2.6.10072
http://www.ijsit.com/
https://azpapers.com/nosql-databases-research-paper/

	Learning Graph Databases: Neo4j an overview
	I. INTRODUCTION
	1.1 Introduction to Graph Databases
	1.2 Overview of Neo4j Graph Database
	1.3 Nodes and relationship creation using Cypher Query Language(CQL)
	1.4 Querying with Cypher Query Language to Neo4j database
	1.5 Features of Neo4j
	II. CONCLUSION

	III. REFERENCES

